2,034 research outputs found

    Towards a quantitative measure of rareness

    Get PDF
    Within the context of detection of incongruent events, an often overlooked aspect is how a system should react to the detection. The set of all the possible actions is certainly conditioned by the task at hand, and by the embodiment of the artificial cognitive system under consideration. Still, we argue that a desirable action that does not depend from these factors is to update the internal model and learn the new detected event. This paper proposes a recent transfer learning algorithm as the way to address this issue. A notable feature of the proposed model is its capability to learn from small samples, even a single one. This is very desirable in this context, as we cannot expect to have too many samples to learn from, given the very nature of incongruent events. We also show that one of the internal parameters of the algorithm makes it possible to quantitatively measure incongruence of detected events. Experiments on two different datasets support our claim

    Adaptive Deep Learning through Visual Domain Localization

    Get PDF
    A commercial robot, trained by its manufacturer to recognize a predefined number and type of objects, might be used in many settings, that will in general differ in their illumination conditions, background, type and degree of clutter, and so on. Recent computer vision works tackle this generalization issue through domain adaptation methods, assuming as source the visual domain where the system is trained and as target the domain of deployment. All approaches assume to have access to images from all classes of the target during training, an unrealistic condition in robotics applications. We address this issue proposing an algorithm that takes into account the specific needs of robot vision. Our intuition is that the nature of the domain shift experienced mostly in robotics is local. We exploit this through the learning of maps that spatially ground the domain and quantify the degree of shift, embedded into an end-to-end deep domain adaptation architecture. By explicitly localizing the roots of the domain shift we significantly reduce the number of parameters of the architecture to tune, we gain the flexibility necessary to deal with subset of categories in the target domain at training time, and we provide a clear feedback on the rationale behind any classification decision, which can be exploited in human-robot interactions. Experiments on two different settings of the iCub World database confirm the suitability of our method for robot vision

    Scalable Greedy Algorithms for Transfer Learning

    Full text link
    In this paper we consider the binary transfer learning problem, focusing on how to select and combine sources from a large pool to yield a good performance on a target task. Constraining our scenario to real world, we do not assume the direct access to the source data, but rather we employ the source hypotheses trained from them. We propose an efficient algorithm that selects relevant source hypotheses and feature dimensions simultaneously, building on the literature on the best subset selection problem. Our algorithm achieves state-of-the-art results on three computer vision datasets, substantially outperforming both transfer learning and popular feature selection baselines in a small-sample setting. We also present a randomized variant that achieves the same results with the computational cost independent from the number of source hypotheses and feature dimensions. Also, we theoretically prove that, under reasonable assumptions on the source hypotheses, our algorithm can learn effectively from few examples

    Adaptive learning to speed-up control of prosthetic hands: A few things everybody should know

    Get PDF
    Domain adaptation methods have been proposed to reduce the training efforts needed to control an upper-limb prosthesis by adapting well performing models from previous subjects to the new subject. These studies generally reported impressive reductions in the required number of training samples to achieve a certain level of accuracy for intact subjects. We further investigate two popular methods in this field to verify whether this result also applies to amputees. Our findings show instead that this improvement can largely be attributed to a suboptimal hyperparameter configuration. When hyperparameters are appropriately tuned, the standard approach that does not exploit prior information performs on par with the more complicated transfer learning algorithms. Additionally, earlier studies erroneously assumed that the number of training samples relates proportionally to the efforts required from the subject. However, a repetition of a movement is the atomic unit for subjects and the total number of repetitions should therefore be used as reliable measure for training efforts. Also when correcting for this mistake, we do not find any performance increase due to the use of prior models

    Multiclass latent locally linear support vector machines

    Get PDF
    Kernelized Support Vector Machines (SVM) have gained the status of off-the-shelf classifiers, able to deliver state of the art performance on almost any problem. Still, their practical use is constrained by their computational and memory complexity, which grows super-linearly with the number of training samples. In order to retain the low training and testing complexity of linear classifiers and the exibility of non linear ones, a growing, promising alternative is represented by methods that learn non-linear classifiers through local combinations of linear ones. In this paper we propose a new multi class local classifier, based on a latent SVM formulation. The proposed classifier makes use of a set of linear models that are linearly combined using sample and class specific weights. Thanks to the latent formulation, the combination coefficients are modeled as latent variables. We allow soft combinations and we provide a closed-form solution for their estimation, resulting in an efficient prediction rule. This novel formulation allows to learn in a principled way the sample specific weights and the linear classifiers, in a unique optimization problem, using a CCCP optimization procedure. Extensive experiments on ten standard UCI machine learning datasets, one large binary dataset, three character and digit recognition databases, and a visual place categorization dataset show the power of the proposed approach

    Transfer learning through greedy subset selection

    Get PDF
    We study the binary transfer learning problem, focusing on how to select sources from a large pool and how to combine them to yield a good performance on a target task. In particular, we consider the transfer learning setting where one does not have direct access to the source data, but rather employs the source hypotheses trained from them. Building on the literature on the best subset selection problem, we propose an efficient algorithm that selects relevant source hypotheses and feature dimensions simultaneously. On three computer vision datasets we achieve state-of-the-art results, substantially outperforming transfer learning and popular feature selection baselines in a small-sample setting. Also, we theoretically prove that, under reasonable assumptions on the source hypotheses, our algorithm can learn effectively from few examples

    Class Specific Object Recognition using Kernel Gibbs Distributions

    Get PDF
    Feature selection is crucial for effective object recognition. The subject has been vastly investigated in the literature, with approaches spanning from heuristic choices to statistical methods, to integration of multiple cues. For all these techniques the final result is a common feature representation for all the considered object classes. In this paper we take a completely different approach, using class specific features. Our method consists of a probabilistic classifier that allows us to use separate feature vectors, selected specifically for each class. We obtain this result by extending previous work on Class Specific Classifiers and Kernel Gibbs distributions. The resulting method, that we call Kernel-Class Specific Classifier, allows us to use a different kernel for each object class by learning it. We present experiments of increasing level of difficulty, showing the power of our approach

    Recognizing Objects In-the-wild: Where Do We Stand?

    Full text link
    The ability to recognize objects is an essential skill for a robotic system acting in human-populated environments. Despite decades of effort from the robotic and vision research communities, robots are still missing good visual perceptual systems, preventing the use of autonomous agents for real-world applications. The progress is slowed down by the lack of a testbed able to accurately represent the world perceived by the robot in-the-wild. In order to fill this gap, we introduce a large-scale, multi-view object dataset collected with an RGB-D camera mounted on a mobile robot. The dataset embeds the challenges faced by a robot in a real-life application and provides a useful tool for validating object recognition algorithms. Besides describing the characteristics of the dataset, the paper evaluates the performance of a collection of well-established deep convolutional networks on the new dataset and analyzes the transferability of deep representations from Web images to robotic data. Despite the promising results obtained with such representations, the experiments demonstrate that object classification with real-life robotic data is far from being solved. Finally, we provide a comparative study to analyze and highlight the open challenges in robot vision, explaining the discrepancies in the performance

    A deep representation for depth images from synthetic data

    Full text link
    Convolutional Neural Networks (CNNs) trained on large scale RGB databases have become the secret sauce in the majority of recent approaches for object categorization from RGB-D data. Thanks to colorization techniques, these methods exploit the filters learned from 2D images to extract meaningful representations in 2.5D. Still, the perceptual signature of these two kind of images is very different, with the first usually strongly characterized by textures, and the second mostly by silhouettes of objects. Ideally, one would like to have two CNNs, one for RGB and one for depth, each trained on a suitable data collection, able to capture the perceptual properties of each channel for the task at hand. This has not been possible so far, due to the lack of a suitable depth database. This paper addresses this issue, proposing to opt for synthetically generated images rather than collecting by hand a 2.5D large scale database. While being clearly a proxy for real data, synthetic images allow to trade quality for quantity, making it possible to generate a virtually infinite amount of data. We show that the filters learned from such data collection, using the very same architecture typically used on visual data, learns very different filters, resulting in depth features (a) able to better characterize the different facets of depth images, and (b) complementary with respect to those derived from CNNs pre-trained on 2D datasets. Experiments on two publicly available databases show the power of our approach
    • …
    corecore